

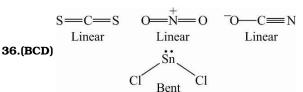
Daily Tutorial Sheet-3	JEE Advanced (Archive)
------------------------	------------------------

31. (Triangular planar)

Triangular planar. Carbon in CH_3^+ is sp^2 hybridisied.

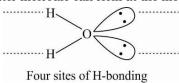
32.(F) A non-polar molecule may also contain polar bonds. Eg. CCl₄, BF₃, CO₂

33. Increase polar character


Resonance in vinyl chloride increases polar character of the molecule.

34. S < C1 < N < O < F

Strength of hydrogen bonding in X–H–X depends on electronegativity as well as size of X. X with higher electronegativity and smaller size forms stronger H-bond. Hence, increasing order of strength of H-bond is S < Cl < N < O < F


35. I₂

 I_2 is Lewis acid because I^- coordinate its one lone pair to I_2 .

37.
$$\text{Li}^+ < \text{Al}^{3+} < \text{Mg}^{2+} < \text{K}^+$$

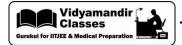
38.(B) A water molecule can form at the most four H-bonds.

39.(A) $\bar{0}$ $\bar{0}$

Electron pairs at $Cl = 2 (\sigma - bonds) + 2 (lone-pairs) = 4$. Hybridisation at $Cl = sp^3$

40.(AC) CN⁻ and NO⁺ are isoelectronic, have the same bond order of 3.

41.(F) Dipole moment $(\mu) = q.d$


Since electronegativity of F and Cl are very close, it is the internuclear distance (d) that decides dipole moment here. Hence, C-Cl bond has greater dipole moment the C-F bond.

42.(F) H₂O is V-shaped molecule.

43. 4.16×10^{-29} , 80.2%

Dipole moment is calculated theoretically as $\mu = q.d$

Here,
$$q = 1.6 \times 10^{-19} \text{ C}$$
 and $d = 2.6 \times 10^{-10} \text{ m}$

$$\begin{split} &\mu_{Theo}=1.6\times 10^{-19}\times 2.6\times 10^{-10}=4.16\times 10^{-29}cm\\ \% \ ionic \ character =&\ \frac{\mu_{obs}}{\mu_{Theo}}\times 100=\frac{3.336\times 10^{-29}}{4.16\times 10^{-29}}\times 100=80.2\% \end{split}$$

- **44.** $3C-2e^-$ (Three centre bond-two electrons). Three centred-2-electrons.
- **45.(F)** The resultant of individual bond dipoles may or may not be non-zero.

Solution | workbook-1 38 Chemical Bonding - I & II